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FOREWORD

The ir.formation released in this report has becn gencrates in support of studies
on the Hypersonic Dynamic Stability Characteristics ot Lifting and Non-Lifting Re-
entry Vehicles. These studies were conducted by the General Electric Company, Re-
entry Systems Department, for the Stability and Control Section of the Flight Dynamics
Laboratory of the Air Force Resea: -h and Technology Division. The program was
sponsored under Air Force Contract Number AF 3.1(657)~11411, Project Number 8219
and Task Number 821902. Mr. J. Jenkins of The Control Criteria Branch, RTD, is
the project engineer on the contract. The project supervisor for the General Electric

Company was Mr., L. A. Marshall,

Inis technical report has been reviewed and is approved.

!
A et
C. B. WESTBROOK
Chief, Cortrol Criteria Branch
Flight lControl bLivision
AF Flight Dynamics Laboratory
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ABSTRACT

The inviscid flow field about a right circular cone in unsteady planar flight is
analyzed by a perturbation technique which is an extension of Stone's treatment of
the cone at small yaw. A solution is found in the form of infinite series in the time
rates of change of the pitch rate and angle of attack. The linear stability derivatives,
Cpm, and Cp  as well as "higher order" stability derivatives auch as C,,, and Cm"

o q a
are presented for a wide range of cone angles and Mach numbers.

The stability derivatives, C,,, and C
q
compared to results obtained from second order potential theory, Newtonian impact

m.s as obtained from this solution are
«
theory, and an unsteady flow theory due to Zartarian, Hsu, and Ashley. Both the
potential theory and the impact theory predict that C me rapidly approaches zero at
o
high Mach numbers while the present theory indicates that Cm& approaches a value
which is on the order of 10 percent (o 20 percent of Cm .
q
Numerical results obtuined frcm the present theory are also compared to ground-
testdataonC . +C

q
data in some instances indicate a prorounced Reynolds number effect,

me The agreement is found to be generally good, although the
a

The numerical results for the "higher order' coefficients are used to predict the

effect of reduced frequency on the parameter Cm + Cm as obtained by the forced
q a
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oscillation testing techniques, It is found that the predicted effect is very small over

the range of reduced frequencies likely to be encountered.
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Speed of sound JZ-;% A

Base Diameter

2
e
Frequency of nscillation
Function deiming the shock shape
Stagnation enthaipy
Static enthalpy
Index referring to angle of attack variation (j = 1) or pitch rate
variation (j = 2)
Body length
Mach number
Subscript relating to the order of derivative of tor q
Unit outward normal to the body surface
Unit inward normal to the shock
Pressure
Pitch rate
1/2p Uw2 - dynamic pressure
Spherical coordinates
Universal gas constant
Unit vectors of the spherical coordinate syst 'm
Specific Entropy
Time

Temperature
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Superscripts
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Subscripts
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Vehicle speed

Velocity components along the R, w,¢ directions
Velocity of the fluid relative to the body

Fluid speed normal to the shock

Velocity of the center of gravity

Cartesian coordinates

Unit vectors of the Cartcsian System

Location of the center of gravity (aft of the vertex)
Angle of attack

Ratio of specific heats

pcz
P

Kronecker delta
Perturbation parameter
Density

Vx\7=Curl\—;

Derivative with respect to time

In the free stream
Steady state, zero yaw condition
Pertaining to the downstream side of the shock

Pertaining to the body




1. INTRODUCTION

As a re-entry vehicle penetrates the atmosphere, its pitch rate (q) and angle of
attack {(a) vary in an oscillatory manner and cause the flow field about the vehicle to be
in an unstcady state. For most purposes, q and the rates of change of q, and @ are
small enough that the differences between the unsteady field and a quasi-steady field
may be considered negligible. An exception to this rule occurs in the evaluation of
aerodynamic forces and moments. The small contributions of unsteady effects to the
normal force and pitching moment appear as damping coefficients in the equations gov-
erning the rigid body motion of the vehicle and play an important role in determining the

loads the vehicle must withstand,

In this work, the unsteady flow field about a vehicle (specifically, a right circular
cone) is examined under the assumption that the motion of the vehicle is given. The
vehicle motic.. appears explicitly in the equations and boundary conditions for deter-
mining the flow field in a body-fixed coordinate system (Section 4.1). In order to make
the boundary value problem tractable, perturbation parameters which are measures of
the departure of the flow field from a steady-state, axis~symmetric field are introduced
(Equation 5. 14) and used to effect a linearization ¢’ the problen: (Section 5.2), The
first-order effects of these parameters are considered, and a formal solutivn in the
form of an infinite series which gives the flow field in terms of the vehicle motion, is
assumed (Equation 5.26). Thus the mathematical problem is reduced to one of solving
an infinite sequence of linear, ordinary differential equations (Equations 5.27) with

variable coefficients which are determined by the steady field at zero yaw. These

*M'ﬂ Tt RN
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equations are solved by numerical methods (Section 6), The numerical results, when
properly combined (Appendix I), give the unsteady flow field to the first order of the
perturbstion parameters, The unsteady flow effects on the normal force and pitching

moment coefficients are obtained by integration of the surface pressures (Appendix Iy,

Results obtained by the method presented here are compared to theoretical results
from other methods of varying degrees of approximation, and are also compared to
experimental results (Section 7). From the cases examined, it does not appear that
there is an orderly pattern of agreement between the results obtained here and the po-
tential theory of Tobak and Wehrend (Reference 13), the shock expansion theory of
Zartaxian, Hsu and Ashley (Reference 14), or Newtonian impact theory, Comparisons

with experimental data do show fair agreement.

Manauscript released by the author September 1984 for publication as an FDL Technical
Documentary Report,




2. ASSUMPTIONS AND RESTRICTIONS

The flow fleld is determined by the body geometry, the nature of the gas, and the

flight conditions, The assumptions and restrictions pertaining to each are tabulated

below:

1.

2,

Body Geometry - The body is assumed to be a right circular one,

Nature of the Gas - The gas is assumed to be inviscid, non-conducting and at
chemical and thermodynamic equilibrium. R is represented analytically as a
y* gas as described in Reference 1, This includes an ideal gas with constant
specific heats as a special case.

Flight Conditions - The vehicle trajectory is assumed to be planar with three
degrees of freedom -1i.e., two-degrees-of-freedom in translation in the plane
of the trajectory and one-degree-of-freedom in rotation normal to the place of
the trajectory, R is further assumed that the speed of the vehicle i8 constant
and sufficiently high that the flow about the vehicle is supersonic with respect
to the vehicle, This reduces the number of degrees-of-freedom to two-angle
of attack and pitch, Only first order effects of these on the flow field are

considered.

The variation of ambient pressure and density along the trajectory is neglected in

the analysis,

PPN
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3. DESCRIPTION OF THE PERTURBATION SCHEME

The flow fleld about a body in flight is determined by the solution to the non-linear
boundary value problem given in Section 4,1, This boundary value problem is stated in

a coordinate system fixed in the body end consequently the motions of the body V and
cg
-6 , appear as "driving functions” in the problem, For the simple planar trajectory

considered here the mationr. of the body are given in terms of two functions of time,

hnd

ch

variables are functionals of the functions ¢ (t) and q (t) in that they depend on all the

o (t) and q (t), and the constant speed U_ = » by Equation (4.13). The flow field

values taken on by o(t) and q (t) in the interval from the initial time, to the current

time, t, and are ordinary functions of position as given by the three coordinates,

(R, w, 0).

In the perturbation scheme utilized in this work, o (t) and Sﬁ_l.‘. are taken to be
U

small quantities on the order of ¢; and ¢o, respectively, which then become the pertur-

bation parameters with the substitutions:
alt)=¢ ot
- UQ
QM =eq® T

the pressure, for example, will be a functional of the functions ¢ (t) and q (t) and an
ordinary function of the parameters ¢ and ¢,. It is assumed that p can be expanded in

Taylor's series in the parameters, q and ¢;, to give a series of the form

P=Py+ € P *€Py+ ... (HOT)




L

The coefficient, p,, is the pressure field produced by the body in steady flight at zero
angle of attack and can be found by established methods, The coefficients, Py and Py
give the first order effects of angle of attack and pitching rate, respectively, and are

to be determined by solution of Equations (4.16) and (4.17). They are functionals of the
functions & (t) and § (t) and ordinary functions of the spatial coordinates. In Section 4,2

it is shown that they can be represented formally by series of the type:

o«

n n- - —
R d a cosgp=)p a+p R da

= - —_— 1,0 1,1 ] —— 4+ «e:) CcO8 @
Py Zpl.n (Uw) at" Uoj dt

n=0

(and a similar series for py as given in Appenaix I) where the Py, nare functions only of
the ray angle, w. This solution holds after "starting transients have died out. The
coefficient, Py1og gives the effect of small yaw in the steady state. The coefficients,

P1.1» Py 2» etc., give the effects of time varying angle of attack.,

It is the coefficients, Pj.n (and corresponding quantities for the othier flow field
variables), which are found as a result of this analysis. The method of finding them is
numerical and is described in Sections 4 and 5. The pressure coefficients yield cor-
responding forces and moment coefficients (Appendix IIT) which are static and dynamic

stability derivatives.

i e o i o A
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4, DERIVATION OF THE PERTURBATION EQUATIONS

4.1 STATEMENT OF THE BOUNDARY VALUE PROBLEM IN GENERAL FORM

The inviscid flow field boundary value problem can be stated to an observer in a
body -fixed coordinate system (x,y,z), Figure 1, by a transformation of coordinates
from an inertial system, Lamb, (Reference 3), gives the appropriate transformed

continuity and Euler Equations:

the continuity Equation:

2 + 9o p\7= 0;
ot (4.1)

the Euler Equations:

6 — v dv a * -
%T+ . v)—\?+2(-6x-\;) +-°-‘-’-= - “m—cg"a"vcg*?"%%* (Px7 x8. (4.2

The form of the continuity equation is unaltered by the transformation. The form
of the Euler equaiions is altered in that the acceleration of a fixed point in the moving
frame of reference appears as a body force (per unit mass) involving the vector velocity of
the center of gravity, Vc g(t), and the vector rotation cf the body, 0 (t), on the right hand
side, Tte vector rotation causes a given fluid particle to experience s Coriolis accel-

eration, 2 (a x 6’), which is present on the left hand side. The derivatives, dvcg

dt
and _d_O_ ., appearing in equation (4. 2) are those observed in the body-fixed coordinates.
dt
For example, dVeg is

dt




-
n
8

SHOCK, F'= 0

Figure 1. Inviscid Fiow Field Boundary Value Problem

v
-8 _x
dt dt

The continuity and Euler equations must be complemented by the energy equation

d(;-\'fcg) ;d(i'.?c? ;d(?-i’e‘!
_— +
dt dt

for the adiabatic flow:

.a_s.. . i-vszo
at

and sn equation of state for the gas, here taken to dbe:

P=pip., 8

T I — & A~ - —t— .=

o - s

(4.9

(4.49)

e




The function indicated in Equation (4.4) depends on whether the gas is an ideal gas,

E a gas st chemical equilibrium, or a gas in some "frozen' composition, The development
£
; of the equations can, however, proceed without specification of the precise form of the

equation of state,

Equations (4.1) .thmgh (4.4) are a complete set of flow equations for the determina-
tion of the pm, p, the density, p, the entropy, S, and the three components of the
fluid velocity (measured in the moving frame of reference), V. for prescribed motions
of the body, ch and a . In order to solve them, initial conditions at some instant of time

and boundary conditions at the body and shock must be given.

As initial conditions it is assumed that at t = 0, the fie!d is the steady-state, axi-
symmetric fleld produced by a uniform forward translation at speed U_ of the body

along its axis of symmetry.

At the body surface, the flow must be tangent to the body surface ana the boundary

condition is:

V.ng=0 (4.5)
On the shouk surface:
F_ (x,:,z2,t)=0, (4.6)

{which must be found as a part of the solutian) the shock equations give the fiow varlables
as fumctions of the relative velocity of the shock and the free stream flow, and the in-

stantaneous unit inward normal to the shock.




T -4"Fs (4.7
® IvFd

The sign in equation (4.7) is to be chosen so that @ ';s is negative.

The shock equations can be reduced to the following set of three algebraic

equations ;

)

[OF "

8 n*®
£
(4.8
Pg Vs *Pg =0, Vi vi_
\2 v2
[ ]
h(p o )+ na=h(po)+_n._.
8,
2 2

These equations expreas, resnectively, the conservaticn of mass, momentum
normal to the shock, and energy in a form which utilizes the result that the velocity
component tangent to the shock is unchanged in crossing the shock. In these equations
Vpe is the component normal to the shock, of the relative velocity betwean the shock

and the flow on the upstream side of the shock, and V¢ is the corresponding compo-

nent on the "Jlownstream side of the shock.

The fiow velocity on the upstream side of the shock is given by:

« -V r{rxX
V. vcg (r xil) (‘.9)

and the component of shock velocity along its normal is given by (reference 3, page 7):
3F
s

m——

L}

X




>

- .""'

R

3F
V.,7=Van
nl= Ve g+ IVFBI (4.10)
o F
at
=-ch-ns +(rxQ) -ng +
|
Equat.ons (4.8) are presumed to be solve in tlie form®*:
\
Pg = Pg Vnws Pos Po)
Ps=Ps Vpw: Pas Poo) > (4.11)

VnB-VnQ;éVn=AVn (vnm» pmo pm) )

The first two of these equations give the pressure and density downstream of the
shock explicitly in terms of the function giving the shock, ¥g, and the motions of the
body, ch and Q) by use of equation (4,10). The third equation gives the three velocity

components of the flow on the downstream side of the sbock by further use of the equation:

Vg=Vog+ Tx )+ BV n, (4.12)

¢.2 REDUCTION OF THE BOUNDARY VALUE PROBLEM TO PERTURBATION FORM

The equations and conditions of Section 4.1 define the boundary value problem for

determination of the inviscid dow field about a body whose motions, V. and 6 , are

cg

*There are numerous procedures in the literature for obtaining such a solution numer-

ically . Reference 4 presents the procedure used in the subsequent numerical work,

10
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known, In this Section, the boundary value problem is reduced to a perturbation form

-t

\/

applicable to right circular cones which move at constant speed, =const, =U_ ,

cg

in such a manner that the z-axis is always parallel to a fixed reference direction, **

i
%
For the type of motion just described, the vector velocity and rotation can be §

written in terms of two functions, « (t) and q (t):

-V’cg = U,(-')? cos a+ ?sina)
(4.13)
- -
N~ qz
é,
To put the problem in perturbation form it is agssumed that & << 1 and %E <«<1,
®
and the parameters 3 and €5 which measure the magnitudes of o and %L- , are intro-
(- -]
duced by
=€ a
and & -6y (4.14)
UQ

In Equation (4,14), & (t) and q (t) are assumed to be of the order of one in the time
interval of interest, and € and ¢, (which are constants) are assumed to be much less
than one. The flow ficld variables can be regarded as functionals of the functions & (t)

q (t) (in the sense defined in Reference 3) and ordinary functions of the perturbation

B &

parameters € and &.

**Although this analysis does not employ stability axes the force and moment derivatives

obtained are conventionai,

11
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In the perturbation scheme, it is assumed that each flow field variable can be ex-
panded in Taylor's Series in the variables ¢ 1 and ¢ X For example, it is assumed that

the pressure can be written in the form:

P = po (x,y.Z) + ‘1 pl (xoY-z.t) + €2 p2 (xny’zot) +enee H.O.T.. (4015)

These expanded forms are then substituted into the equations defining the boundary
value problem and the resulting set of perturbed equations is separated into a number
of sets of equations for the perturbations by the usual process of equating forms in like

powers of ‘1 and €2. (Only the three lowest order terms are considered.)

The boundary value problem so defined for the lowest order coefficients, po,po,So
and Vo, is, of course, the problem of determining the steady-state, axisymmetric field
produced by the body as it translates with constant speed, U_, parallel to its axis of
symmetry. Under the assumptions listed in Section 2, this field will also be conical
and can be solved by the methods of Taylor and Maccoll (Reference 5), or Romig (Ref-
erence 6). In the subsequent work it is assumed that this field is known*. The equations

defining the steady state field are given in Appendix II,

Substitution of Equation (4.15) and like expressions for the density, entropy, and
fluid velocity into Equations (4,1) through (4.4) to obtain the two sets of equations gov-

eming the coefficients of € and € yields.

*The numerical procedure used to obtain it is given in Reference 7.

12




ot
aV - - - - vp Ip
i@ VeNVen) Vs - 2 o F (4.16)
o Po j=1,2
asj - -
+ Vo-vS + VeuS =0 ;
at ]
- 2 2
p:l = co pj +eo Sj'
da
where: --UaD —')7, i=1
- dt
F: (4.17)
j 5 _
-.-._Uoo er - -s-.Ucdq
2(Vox2) q—+ — gy +(rxz) — — , =2,
L L L dt

The boundary condition at the body surface, Equation (4.5), separates into the two

sets of conditions:
VJ 'nB=on (i=1,2) (4‘18)

For the conical geometry, the equation giving the shock, Equation (4.6), is most
conveniently expressed in terms of the spherical coordinates, (R, w, ¢), Figure 2, in
a form giving the ray angle, w, as an explicit function of the radial coordinate, R,

meridional angle, ¢, and time, t:

Foruwg R, 0,8 ~w=0 (4.19)

13
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Figure 2, The Spherical Coordinate System (R, w, ¢)

The perturbation form for the shock is then (to the three lowest order terms):
Q= “'s=“'bo+ (1 “'sl (R, o, t)+(2 Wgo (R, ©» t) (4.20)

where Weo is the constant shock angle from the steady-state, axisymmetric, conical

flow solutions, The unit inward normal to the shock (Equation 4.7) becomes:

2
-9
]
= .=, = awsj o ij
s 6:l R +
oR slnwso 1) @4.21)
j=1
and the flow velocity on the upstream side of the perturbed shock is:
V =R + + 3 \4 + v + v
' vw-R “oo +cl u.l €2 uuz w ®0 €1 o] €2 @27+
e W, € “'.2} (4.22)

14




where:

u =U cosw

©0 o 80

u = a

»1 -2(0, slnwso cos o + w81 slnwso )

u =a&° X gingy cosep- U w _sing (4.23)
o2 L cg 8o o 82 80

v ==-U sinw

=Yo) © 80

vV =- a i

®1 U _(acos Weo cosgp + Wgeq cos ("so)

Va2=q—-‘3- (xcgooswso - R} cop - Umws? cos w
L

le

ansin ©

qu_
w .= . fRcusw - X sin @
2 L so cg

The perturbation form for the normal component of relative velocity between the

upstream flow and the shock is obtained from Equation (4.10) as:

2
V. =-- v
A 2 :ej Vaj (4.24)

j=1
where!
T - u w dw . _ _
an ©0 R 78) + R 8 ng, j=1,2,
R at

Substitution of Equation (4.24) into Equations (4.11) and (4.12) gives the pertur-

bation forms of the pressure, density, and velocity components on the downstream side

15
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of the perturbed shock., These resulting expressions must be equated to expressions
for the corresponding variables in the field evaluated at the perturbed shock to obtain
the proper boundary conditions for the perturbation equations, The resulting condi-

tions are: (j =1, 2 in each equation)

9P p, |-
= - +
dw 3V
nwo
w=w = -
80 vno' vwo
dp ap
(o] s -
w » 8 = - +
oj(R, o P2 B wsj vnj
ow Vi
W Luso vnm_ - Vcoo
du v
V(‘R.w P, t) = (u -ﬁ+v -u7+w 3)-—11 0‘07 w
j 80, =] > o + 8j
AW " ow -
80 Yoo
Aw dw
Y R 8] 1 8j =
+AVn( Qo.pq'p) R R+ ®
3R sin w d
8
AV
n
- nj
B.Vnm
Ve = " Vao (4. 25)

In Equations (4.25), the partial derivatives with respect to w arise as a result of
evaluating the variables in the field at the perturbed shock, The partial derivatives with
respect to vnl are to be obtained by differentiation of the expressions indicated in

Equation (4.11); expressions for them are given in Reference %,

16




To complete specification of the boundary value problem for the perturbation vari-
ables, it 1s necessary to give the initial conditions at t = 0, Corresponding to the

assumption stated in Section 4,1, this condition is that the perturbation variables vanish

att=0,

Equations (4.16) and (4.17) together with the boundary conditions at the body sur-
face, Equation (4.18), the boundary conditions at the shock, Equation (4.25), and the
initial conditions define two separate, linear boundary value problems for the perturba-
tion variables, In these problems, the "motions" of the body, & (t) and q (t), appear in
inhomogeneous terms and play the role of 'driving functions." Because of the linearity
of the problems, the solutions for arbitrarily prescribed functions, & and q, can be
divided into parts which can be called the particular solution and the complementary
solution. The particular solutions are defined as solutions of the inhomogeneous prob-
lems which reduce to the trivial solution (all perturbation variables equal zero) when &
and q are identically zero; the complementary solutions are defined as solutions of the

homogeneous problems (obtained by setting & and q equal to zero) which cause the com-

plete solution to satisfy the initial conditions,

On physical grounds, it is known that the complementary solutions must 'die out"
in time, and their decay time is some nominal multiple of the time it takes the body to
move through its own length, L/U, . Subsequent to this decay time, the flo. field about

the body is given by the particular solutions alone. R is, therefore, only the particular

solutions which are of interest here.

17
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The problem of determining the particular solutions of the boundary value prob-
lems for arbitrarily prescribed functions, @ (t) and q (t), can be approached in several
ways — o.§., by use of the Laplace transform. The approach takan here is one which
reduces each problem to a problem: of solving an infinite sequence of sets of ordinary
differential equations having the ray angle, w, as an independent variable. The substi-
tutions waich accomplish this reduction are tabulated in Appendix I. The form of the

pressure perturbation, p,, is typical:

1
Pl(R.uhco.t)= Z pl,n“)i ?.—:. co8 @
U d (4. 26*)

n=o ®

In writing these series, it is assumed that & (t) and q (t) are analytic functions. Also,
it is recognized that there is no a-priori guarantee that these series are convergent for

any given functions, & (t) and @ {t). The factor 1/U : has bee introduced so that the

perturbation coefficients, pj n have the units of pressure.

The two infinite sequences of sets of ordinary differential equations for the varia-
bles pj.n(‘"' etc., which arise from the substitutions listed in Appendix I can be

written in the common form, (j =1,2), (n=0,1,2,3....).

d -
_d: z(Pov’.n+vopj‘n) linwi#(n¢2+6j.2) (p°uj,n*“opj,n) sin w

’puw’.n-(/?j.n (4.27a)
d‘a -
*The ""zeruth' derivative, —— , is equal to @, by convention.
dt°
18




du Pn
Vo d,oj'n 'Vo"j,n+(n+6l-2) (uouj'n"’;;l;-) ’ﬂj,n (4.27)

190 P 9o |
g, d P2 du

dv
_ll..q .’.uovj.n+v°

dv
U nptv -2,
vO .0 jn
dw dw

3
;
g
&
4
i
:

(n+6j'2) “o"j.n"“é,n (4. 27c)
Min o 9
Vo g U ¥),nT Vo ¥,pcotw P, AT 6].2) Yo ¥j,n " "y.n
(4.27d)
v0 %"‘—q + (n+6j|2)u°sj’n -4’11 (‘.27.)
(4. 271)

Pj,n* o’ Pjn* "o2 Sj.n

/ "
R, .= -(1-6, ) Ua bj.n-lun""

f, = -(1- bo,n) Us Yy p-1 - bl,nbj,l Uz. sinw+ 6o,n 6).2 Uas (2 vy + Unsinw)
/éj = "(1 ‘bo'n) UQ Vj.n_l‘al’n U.z (6j'1 C“w*ﬁ.z)*

5o.n 61'2 Ua (-2 u, * Uy cos w)

%.n = - -bo,n) Va ¥y n-1* 21,0 v ¢y,1+§,2c080) ¢

6o.n 6i.2 {2 Ua (u, CO8 w -V, sinw) - U.z}

X

= =(1-65 o) Ve 8,n-1

The coundition of irrotationality of the field at zero yaw (Appendix I} has been used

to simplify equation (4. 27b).
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The boundary conditions for these equations can also he written in a common

form. Atthe body, « = wp, the condition of (angency of the flow becomes:
v,,,,-o ttw-u.-s (4. 28)

At the shock ' = €oo! the perturbation variables, pj n etc., are related to the

quantities, wj a which describes the perturbation in the shock shape by:
= - ap 9 ap
Pion 3 2 (““6).2’0."’ "so 2 w
bw av nhn
:Ll)” nl V =-v
nl ®0
3
22
Jon
'
3vn1 V _=-v
{al w0 (4.29a)
3P, P,
pj'na e . +(n+ 1+6j.2) Us co8 wy, v “j.n
W@ nl {v . _
80 nl = -v_ )
o
A
+ A -12-
| n1 ® “V=o (4. 29b}
|
2
Pj,n Co
Sjn”® - Pi,n
» 2 2 »
°o e, (4.29(?)
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U p= (14 Gy ) BV, (- Voo, Pe, Fud Wy g =005 8,1 Vs din gy (4.29d)

Vg

= -fu + —
‘f,n Y)Y .
80

34V, |
- (n+l + 6j,2) U, co8 w avnl “j n

vnl == VDQ

AV,

6. n Us [51,1 cos w,  + 5;,2] Moo W

vnl ‘VQO
(4. 29e)
Avn (- Voo, Py PL)

Win® 310 oeag “‘j,n*bo,num(éj,l*'bj,zcos wao) (4. 291)

where:

xj.n = 60,n L, (Oj,l cos wso + 63'2) + (l‘bo,n) La“ﬁ,n-l

Equations (4.27a) through (4. 27{) are ordinary differential equations with varable

coefficients which are determined by the solution {or the axially symmetric conical

field, u,, v, Py and p,. Forj =1l and n=0, the Equations are equivalent to those de-

rived by Stone {Reference 9) for the problem of cones at small vaw. For eithe1 value
of j and any value of n (except n = 0), the equations and boundary conditions are com-

plete provided that the solution for the same value of ) and a value of n vvhich is une

less. has been previcusly selved. For n s U, the equations and boundary condit:uns

are complete withowt 3 knowledge of the solution for any other value of j and n. For

R O - & e . .
T iy g
3K

st I

« ko
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any values of j and n, the problem is a two-point boundary value problem in which the

boundary conditions contain an unknown constant w; .

The equations have a singular behavior at the body surface where v, = 0 since v,
multiplies the derivatives of the perturbation variables in equations (4. 27b) through

(4. 27e). The method of treating this singularity is given in Section 5.




5, NUMERICAL SOLUTION OF THE PROBLEM

The numerical method of solution of the problem is based on manipulated forms
of Equations (4.27a) through 4,27f), The objective of these manipulations is to reduce
as much as possible of the numerical work to performing quadratures and also to pro-

vide a convenient method of handling the singularity at the body surface.
The manipulated forms of the equations are obtained as follows:

Dividing through equation (4.27e€) by Vs and solving it by use of an integrating :

factor gives

w
S d
T I e o
’ v
v o - 0 1#0
= W
80 80
where
m=n + 62,j
and

w=J-pvsinw :
0 o o ' i

has been introduced by use of the equation

o AT, 3 oo

v

ua =

Yo 2%
0 wo dw

from Appendix II,
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Multiplying equation (4,27b) by uo, equation (4.27¢) by vy and equation (4.27e) by

To' adding the results and combining terms gives

dH
v —j£+ mu H =u k. +v 4+ 1
o dw o j,n o j,n o j,n o j,n

where H, n is a quantity related to perturbations in the stagnation enthalpy

3N
+u u _+v v :
J,n o ).n

The condition of irrotationality,

du

v o= =2
o d

w

has been used in deriving equation (5.2), Also a quantity,

dT p dpo pjndpo

0 " j,n
5, 4 *

@ 2dw 2 dw
o)

DO 0

(5.2)

(5.3)

which appears in the derivation is shown to be zero by use of equation (4,27f), the

relation,
A
3po _ 1 po
dw c 2 dw !
0
the identity,
3T _
/s " 2,2
; and the fact that
S = const,
(o}




The form of equation (5.2) is the same as equation (4.27¢) and the solution is

w
+ + A
_ Hj,n m m uo fj,n Vo bj,n To j,n
H = b4 + ¥ dw
j,n m o o (5.4)
q;o \' lbm
“s0 w oo §

80

Solving eq. (5.4) for pj n’ substituting into equation (4.27b) and re-arranging the
result gives

d u - mH +mT §
. j!n - (m+1)v =$j9n j’n o
j,n dw j»n v

j,n (5.5)

J

Substituting for pj n from equation (5.4) and vj n from equation (5.5) (in terms
of Jj n) in equation (4,27d) and re-arranging again gives a result of the same form as

equations (4.27e) and (5.2). The solution is

. jyn . m+l
u w. sinw+ v
W = ow . j,n - j,n m+l 0
j,n j»hn (m+1) sinw " m+1 sin w
o
L=
80

(5.6)

rom

The preceding resuits can be used to eliminate Vj n’ pi n and W

).nf

equation (4.27a) and thus reduce it to an equation for uj n’ Equation (5.5) gives vj n
du 1] ‘ '
in terms of J. and bt and equation (5, 4) subsequently gives p. _interms of H
),n dw j.n J,n
du

o0 and Sj n Substituting this result into equation (4.27f) then gives pj n in
da ’ ’

u. 1
J.n

25




terms of the same quantities, Using this result toge her with the expression for vj n
’

: from equation (5.5) andw, intermsof W, andu from equation (5.6) in equation
! jon jon jon
' (4.272) gives
d2 du ( Hr
u m +
o , 1 dA __ Jn (5.7
—3— ' A0 dw T BY,.
dw vz
Po 1-_0 \l|singy
c2.’
0
where
W
v
u, v
A= o 1-—‘2’-— sin w exp %-(zm»fa) /;_°_dw (5.8)
¢ [ - v2
Wgo °
2 2
-1 co- uo
B = 2 + (m+l) m+2)| 55—, (5.9)
v 9 c -v
1- -;— gin w ° °
c
o
p
_ (m+1) 1 u v sin yw
v2 dw c2
o {1- % sin w °
o c
0
dT‘1
r = d_u + Fz (5.10)
with: 2
p sinw \ p v sinw
r o= =2 1-—— 13 - 2 H
1 (m+1) c2 j,n c2 §,n
o 0 (5.11)
% To * %
+ v sinw S
2 j,n
c
o
26
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= Q _ - o0
Tq i,n oo wj.n (m+2) sin w 3 Hj,n
o
(5.12)
2
Pbu v J p T +e
s 200 4o _ o o o |\, i
? (m+1) ° c? / Jn :
o o
Equations (5.1), (5.4), (5.5) and (5.6) give Sj,n’ Hj,n’ Jj,n and wj,n as linear

functions of the shock perturbation parameter, w j,n by substitution from the boundary

R A M e el BN

conditions, Equations {4.29). That is, they give the variables in the forms:

_ e (2) \
Sj.n 50" S0 Y
_uq) (2)
Hin~ Bin* Hj,n “,n
Y 0 R ¢ > (5.13) i
Y0~ % " o Yn :
and:
_wD 2)
Win = %ot Y %

/

where the superscripted variables are knuwn functions of w (or are known constants in
some instances) which can be determined numerically by quadratures, With the super-
scripted variables in Equation (5.13) known, the quantities, rl and I‘z , Which determine

the righthand side of Equation (5.7) are also known in the sense that the superscripted

quantities in the expressions:

S Y
1 1

1 Jun

(5.14)

1) 2
9 1‘2 + T‘z wj'n

—
)
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are known functions of w. Thus, Equation (5.7) is a second-order ordinary differential

equation of the form:

d u du
Ao 1 e Ya ]
102 ‘A de de T BYaT 1t 2% (5.15)

where 7 1 and 12 are known functions of w, and w j,n is an unknown constant. The

solution of this Equation involves two additional constants of integration, K 1 and K2,
and can be written in the form
u o, @ (5.16)

j,n B uj,n uj.n u’j,n ¥ gj,nKI +zj.nK2

where:

z, o is a solution of the homogeneous equation,

2
dzj'“+.ld_§dzj'+gz - o
d2 Ade du Jon

w

Subject to the conditions,

dz
¥ 3 —.u 2 -
zj,n (u‘B) 0, i I 2 u (w B)
o =
(‘'hese boundary conditions are chosen so that z1 0" vo);
gj n is a linearly independent solution of the homogeneous equation (Reference 10,
Pg 33),
"
dy
S0 %0 | T (617
Az
jon
80




and \l.u) +
Jun

page 30)

(1)
LN

“jn = zj.n_/ Ag (T @y q T I

@)
Yn %5,
W
u?
J,n
wSO

w

w j.n is a particular solution of equation (5.15), (Reference 10,

K f Azy q (T + oy T

Wso

The particular solution is separated into the equations

e
j,n

Putting

and A from equation (5.8) into the expression for uj n

eliminate

x)

u
j.n

w

w

=2 Ag. T, du-g.
h“f B 'k g

«w

w

80 80
ﬁrm
(m+1) 1 r ®
AN \dw 2
vO
po 1 -3 sin
¢
o

d T k)

1 gives

d

-~ (m+1) gj' n(zj,n

-
1

X» + (m+1)gz 1
= 1'“
80

29

)

a [ Azj,n ‘rkdw (k=1,2)

i) and integrating by parts to

)
-x"“]z } (5.13)
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e

‘.4‘;

F = -(2m+3)

The perturbation variables, vj e €3N also be expressed in terms of the three con-

stants, wj n’ Kl and Kz, by use of Equations (5.5), (5.13), (5.16) and (5.18),
K dg K dz
v =V(l) +v(2) W + 1 §:0 + 2 ),
Jin J,n jbn j,n (m+l) du (m+l) duw
where
w
/ dw
_ k) ‘so o)
I A R Y
j.a ho 1 J] dy A (m+1)
80
dz dg

30
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The equations, as written, contain seversl limiting forms of the type 0.~ and
k)

j,n

forms have finite values and the final results for the perturbation variable are all

» - »ag the body surface is approached. With one exception, J. ', these limiting

finite at the body surface, The following limiting forms are encountered.

1. Equations (5.1), (5.4), and (5.6) contain terms of the type

w
I-t:)n/ f(w')n da wherem # o(form =0, {f ¥ 0 in all cases) and
w vo*o
80

f (») is non-singular at the body surface. As the body surface is approached,

w
m f )
*o —= 0 and [ = du|* o, However, use of L'Hopitals rule and
w vo *o
su

f (w
the equations of Appendix II gives lim I = __1_3)_ . These terms are
v —W m uo (wB)

B
handled numerically by use of + quadrature formula having the same singularity

as the integral,

ho
.

Equation (5.5) requires division by zero at the body surface, For m =0,
the numerator of the fi .4 ls identically zero so the limit 18 zero; for
other values of m, the limit is not finite. However, this infinity does not

appear in the subsequent numerical work as explained in items 4 and 5.
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3. Equation (5.17) for g, _ approaches the form 0,=:at the body surface due to

Jon

the boundary conditiuns imposed on zj n’ The limit is again finite and is:

1
g b =
oo ¥ 2u @y Aty

The first derivative of gj n (which is needed in Equation (5,18) approaches
the form o . « at the body surface and the finite vaiue of this limit is ob-

tained as foilows:

differentiating gj n in equation (5.16) gives

w
d dz.
Kj,n 1 . _in / dw
) - . D4
da Azj,n d Az °
w jon
80
As an identity we have
1 ) d 1 l 1
N I - b
Az~ du dz. dz.
j,n Az, h") L.n
j,n Az
dw j,n \d«
dzz
1 dA  dz ]
rulan Jon - —LZ
A d @
¢ ow d o
or, using the cquation for zl
_ LI ) B
2 Tday e 2
Az .n Az in \ A (d‘),n)
o0 dw —_—
dw




Substituting this result into the expression for the derivative of gj n

gives
d:zj n w
dgj,n _ dw . de n / B dw
= ’ — Ty
dw Azj’n dzj.n ie A d"j,n 2
dw dw
w
a=w 80

which is an equivalent expression which does not approach a limiting
form at the body surface.

4., In the computation of u)(k; , Equation (5.18), integrals of the form:

where ¢ 15 {roe of singularities, are required. Although J.  is infinite at

»

the body surface, these integrals are finite. By substituting fnrtg n from

eguation (1,27e) in equation (5.2 and solving the result for /} . equation

{5.5) can bhe written:

d H dSs,
o -1 %S )
_ dr ¢ d: j.n
J =
IR u
o]
dH . n
Using this expression for ‘.!} n and integrating by parts to ~emove —ali——-

das '

and —E);—“ gives the following cxpression for the integrals
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Y L@ _
1“?(5‘"03)'“-11)’;1) Uy (H).n Tosi-n)

o o

w=w
80
)
T o )
+ f& ai(l}ﬂ dd_.(‘o/un)— {1' dw
j»n du Uo J,n dw o
go |

There is no problem with singularities with this form for the integrals,

w

/ Edw

L
- (k) e 80 J.(k)
SR I3 appecring in

5, At the body surface, the term
m+l

Fquaticn (5.19) assumes the limiting form o - » (except when m = 0), How-

ever, when th~ expression for Fl(k ) arising from Equation (5,11) is sub-
stituted algebraically inte this expression, the infinities caicel without the

application of L'Hopitals rule tc give a finite result,

The numerical solution of the problem proceeds in the following order (the axisym-
metric conical flow solution is assumed to have been pre-computed).

1. Compute S(ll)o and Sl(z)0 from the formulae which arise from substituting
the boundary conditions at the shock, Equations (4.29a), (4.29b) and (4.29c)

into Equation (5.1).

2, Compute “1(12) and HI(ZL from the formulae which arise from substituting
L ’

. .2
i

R
—————

the boundary conditions at the shock, Equations (4,29a) through (4.29e) into

Equation (56.4).
34




10.

Compute W(ll)0 and Wl(zz) from the formulae which arise from substituting the

boundary conditions at the shock, Equations {4.29d) and (4. 29f), into Equa-~
tion (5. 6).

dz

Compute z 1,0 and dcj;;o as described following Equation (5.16), using

finite difference methods when m # 0.

dg
dw

Compute £1,0 and from Equation (5.17) and its derivative.

(2)

Z

) D

2
Compute Ig) , Ié » L0 and I_ * and the remaining factors present in Equa-

tion (5. 18).

Compute v

)
1,0

and v{zz) from Equation (5.19a).

Compute the constants, w1, 0 K, and K, in Equations (5.16) and (5. 19) from

the boundary conditions, Equations (4.28), (4.29d), and (4. 29e).

Compute u; , from Equation (5. 16), V1,0 from Equation (5. 19), 31,0- Hy, 0»
and Wy o from Equations (5.13), wj ¢ from Equation (5. 6), P1,0 from Equa-

tion (5. 3) and P1,0 from Equation (4. 27f).

Repeat the preceding sequence forn=1, 2, 3... Nax and for j = 2,

n=0,1,2... Nmax to generate as many perturbation coefficients as

desired.
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6. SAMPLE RESULTS AND COMPARISONS

Figures 3 through 14* show distributions of the perturbation coefficients defined in
the preceding Sections, across the shock layer of a 10-degree cone at Mach 10 for ideal
gas conditions. These results show a tendency for the magnitude of tLe periurbation
coefficients to decrease with increasing n. This tendency continues through n = 10 (the
highest value for which results have been obtained) and supports the use of series of

the type given in Equation (4. 26) in obtaining a solution to the unsteady flow problem.

The perturbation coefficients are fairly well behaved. Near the body, some - such
as those in entropy, Figures il and 12 - have derivatives which vary like (w - uB)- 1/2
due to the v, which multiplies the derivatives in Equations (4. 27b) through (4. 27¢).

This behavior does not cause any difficulty in the numerical work, however.

The perturbation coefficients of the shock angle corresponding to the results shown
in Figures 3 through 14 are given in the table below.
TABLE I

PERTURBATION COEFFICIENTS FOR THE SHOCK SHAPE
b = 0 - =
“B 107, M‘ 10, y = 1,4

« =0.215 rad
S0

o T 0-099 W, =-0.176

w =-0,0742 “"2,1 = ~-0,0112
“r,27 0019w, o 0 0104
Xy 7 T OVOTIT s 0.00250

*All rumerical results shown inthese Snad other figures are for anideal gas with y - 1. 4.
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If the body were pivoted at 50 percent of its length and oscillated such that

(4] =65in2ﬂft

q=27 fa cos 2 r ft

with 7{}“‘ <<1, the shock would be given approximately by
2 2
@ =0.215 - 0.0969{ 1+( 3.65>~ - 0.92-% + 0, 125) (2L
s 2 L U,
- L
oin 218 (t+ 2,62 (x-(:}lf)ll..) ) .

The amplitude of oscillation in the shock is essentially the quasi-steady valiia as-

sociated with the cone at small yaw under steady-state conditions and the time lag,

2.62(x-0. 191L)
U

-~

is quite small, in general.

Figures 15 through 28 give static and dynamic force and moment derivatives
resulting from integration of surface pressures. The static normal force derivatives
given in figure 15 are identical to those given in References 11 and 12, The normal
force derivative CNqo’ applies for rotation about the cone vertex. For other locations

of the center of gravity it is given by:

Figures 29 and 30 show comparisons of the numerical results for unsteady normal

force cevvatves with results obtained by several other methods. These are: 1) the

e e e e nagt - A e £
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second-order potential theory due to Tobak and Wehrend (Reference 13); 2) the unsteady
flow theory due to Zartarian, Hsu and Ashley (Reference 14); and, 3) the Newtonian
impact theory. In order to obtain the form of results shown in Figures 29 and 30 from
the results of Zartarian, et. al., it was necessary to substitute expansions of the form

at-"u) = a@-a (t)-Ui+

o0

in Equation (38) of Reference 14.

Figure 29 shows a fair agreement between the present results and potential theory
for a 10-degree cone at 1nw Mach numbers. The agreement for a 20-degree cone
(Figure 30) is not so good, however. At higher Mach numbers, the impact theory
does net predict CNqo and CN& as well as might be expected based on results for
CNa . The agreement with the theory of Reference 14 is good over limited Mach No.
ranges for both the 10-degree and 20-degree cones but the two sets of results tend to

diverge at both high and low Mach numbers.

Figure 31 shows a comparison of numerical results with experimental data for a
10-degree cone at Mach 10 over a range of center of gravity locations, The data also
cover a range of Reynolds numbers. The agreement between theory and experiment is
quite good except for the highest Reynolds number. Figure 32 shows the experimentally
determined variation of the dynamic stability parameter, Cmq + Cma , with Reynolds
numaber and gives some indication that tiie disagreement just noted may be due to

boundary layer transition.
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Figure 33 shows a comparison of theoretical results and experimental data for a
20-degree cone at Mach 8, The data are for varying angle of attack but show very little
influence of angle of attack. The agreement between theory and experiment at zero

angle of attack is seen to be quite good.

Figure 34 shows the theoretically predicted effect of frequency of oscillation on the
dynamic stability parameter, Cmq + Cm&, for a 10-degree cone in a forced-oscillation

wind tunnel experiment. The values of the constants, Kl, K,, etc., indicated on the

2
Figure 34 are related to the unsteady force coefficients, CN& CNd , etc. The result
is that there is no detectable effect of frequency over the range of frequencies en-

countered in wind tunnel testing. This is not in agreement with experimental observa~

tions which show a fairly large effect of frequency (Reference 15). The effects of

frequency appear to be a strong function of Reynolds number.
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APPENDIX 0
EQUATIONS FOR THE FIELD AT ZERO YAW

The following equations determine the unperturbed field at zero yaw:

the continuity Equation,

dpgvesinw

’
10 +2pouoslnw-0;

the condition of irrotationality,

the stete Equation,

p0=p (po 80);

the integrated energy Equation,

) o = constant

and, the Bernoulli Equaticn

ul+
2

h (p,s) + = const.

The first of these equations can be re-writien:

J—povﬂainw ‘ =0

17

d
“o"a'z"J“’o'o"w ’ "o




and is used in deriving Equations (5.1), (5.4), and (5.6). These ejuations are used to
replace derivatives of the flow field quantities at zero yaw by equivalent expressions

in terms of the flow field varisbles themnelves.
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APPENDIX III

EXPRESSIONS FOR THE NORMAL FORCE AND MOMENT

Integration of the perturbation description of the pressures on the surface of the cone

AR

gives the following expressions for the normal force (negative of the force in the y direc-

tion) and the moment in the z direction about the center of gravity, §
-F - n .n - ;’
C = Y = N D d e ., E N ;
N q A 1,n\2 U n 2,n .
> B dt
n=0 n=0 j
xc 1,n ( D )n+1 dnq
L tan W, 2U, d°
c - M, z Mo @2 /D \* &4
- Q3 AL 2
m qQ_ AB L cos” w (n+3) {2 U_ dt®
n=0 B
. )
2,n (n+4)
n=0
i
X o+l .n x ¢
L u:nn - —; Du ~1. fq §
*B (@+3) cos g U, dte" L
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where:
X ) pl.n co8 wp
1,n qm @+2) smnﬂ ‘”B
N otz L
2,n q n+2
] (n+3) sin Wy

The normal force derivatives defined in the symbols section are related to the

N. _ as foliows:

j,n

P
[ ]
o
BC:
v
=4
[o%]
b (2
1]
=]

(2taan) Nl,n
at"
n+l
2U 3 C _ n+l
( cn) N = (2taan) Nz.n
L n
d q
3 n
dt
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